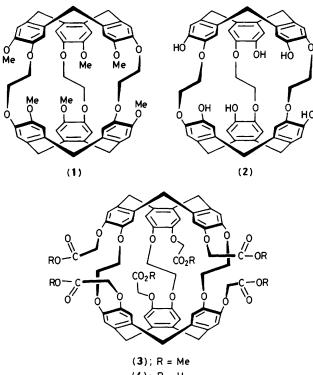
Water-soluble Cryptophane Binding Lipophilic Guests in Aqueous Solution

Josette Canceill, Liliane Lacombe, and André Collet*

Collège de France, Chimie des Interactions Moléculaires, E.R. C.N.R.S. No. 285, 11, place Marcelin-Berthelot, 75005 Paris, France

The first water-soluble cryptophane (4) has been synthesized in three steps from cryptophane-A (1); (4) has been found to complex chloroform and dichloromethane strongly in D_2O , with binding constants in the range 10^3-10^4 dm³/mol.


Lipophilic hosts of the cryptophane¹ family [e.g., (1)] bind neutral molecules of complementary size and shape such as the halogenomethanes, in the absence of any hydrophobic effects, to form highly structured and very stable 1:1 complexes ($K_s > 10^2 \text{ dm}^3/\text{mol in } 1,1,2,2$ -tetrachloroethane).² In order to estimate to what extent hydrophobic forces could further stabilize these host-guest supermolecules, it was desirable to synthesize a water-soluble cryptophane.³ Accordingly, we report here the conversion of cryptophane-A (1) into the hexa-acid derivative (4), and some preliminary experiments on the complexation of $CHCl_3$ and CH_2Cl_2 by (4) in D_2O .

Hexademethylation of the readily available $(1)^4$ to the hexaphenol (2) (cryptophanol-A) was satisfactorily achieved by using lithium diphenylphosphide⁵ [2 equiv. per OMe group, tetrahydrofuran (THF), 24 h, room temp., 60%]. The latter, on reaction with Cs₂CO₃ [1.03 equiv. per OH group, dimethylformamide (DMF), 1 h, room temp.] and subsequent alkylation with an excess of methyl bromoacetate (20 h, 60 °C), gave the hexaester (3) in 65% yield, m.p. 195 °C (from

Table 1. Thermodynamic and kinetic parameters for guest inclusion.^a

Host	Solvent	CH ₂ Cl ₂		CHCl ₃	
		ΔG_{i}	ΔG_{i}^{\ddagger}	$\Delta G_{\rm i}$	ΔG_i^{\ddagger}
(1) (4)	(CDCl ₂) ₂ D ₂ O	-3.7 ± 0.1 -5.1 ± 0.5	9.4 ± 0.5 9.8 ± 1.0	-3.3 ± 0.1 -5.3 ± 0.5	9.6 ± 0.5 10.5 ± 1.0
Hydrophobic stabilization		-1.4 ± 0.6		-2.0 ± 0.6	

^a ΔG_i (free energy for guest inclusion) and ΔG_i^* (barrier for guest inclusion) in kcal/mol at 300 K; the barrier for guest exclusion (ΔG_e^*) was determined from the line shape of the free and complexed guest resonances and $\Delta G_i = \Delta G_e^* - |\Delta G_i|$.

(4); R = H

CHCl₃-MeOH), m/z (f.a.b.m.s.) 1243.54. Saponification with a slight excess of NaOH (MeOH-H₂O 1:1, 3 h, reflux) and acidification (HCl) eventually afforded (4), m.p. 220-230 °C, in quantitative yield. New compounds (2)-(4) displayed expected ¹H n.m.r. spectra.⁺

Addition of ca. four equivalents of NaOD was sufficient to solubilize the hexa-acid (4) in D₂O (pD ca. 6).⁶ Small-angle X-ray scattering experiments did not reveal the presence of aggregates at 10^{-2} M concentration, and such solutions were used for all binding studies.

The 200 MHz ¹H n.m.r. spectrum of the 'empty' host (Figure 1a) showed broadened signals probably due to the presence of trace amounts of small organic molecules‡ (solvent residues) undergoing reversible complexation. On addition of less than one equivalent of CHCl₃ (Figure 1b), a new set of sharp resonances appeared for the host while no signal was detected for CHCl₃ at the expected position; instead, a peak at δ 3.15 was present, and ascribed to complexed CHCl₃. Only when slightly more than one equivalent of the guest was added did the free CHCl₃ become observable at δ 7.69, and then all the host resonances simplified into a single set of sharp peaks that we ascribe to the

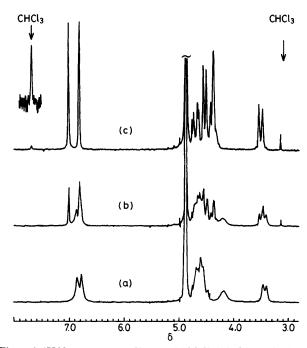


Figure 1. ¹H N.m.r. spectra of hexa-acid (4) (0.009 M) in D₂O with ca. four of the CO_2H groups ionized by addition of NaOD (see text); (a) original solution; (b) ca. 0.5 equiv. of CHCl₃ added; (c) ca. 1.1 equiv. of CHCl₃ added; the DOH peak was taken as the reference (δ 4.700).

[(4)-CHCl₃] supermolecule (Figure 1c). The peak at δ 3.15 vanished on irradiation at δ 7.69 (saturation transfer) thus confirming the above assignment and indicating that (4) reversibly binds CHCl₃ in water. The upfield shift induced by the host on the guest resonance ($\Delta\delta$ 4.54) is similar in magnitude to that induced by the other cryptophanes, and especially by (1) binding CHCl₃ in $(CDCl_2)_2$ ($\Delta\delta$ 4.33).

The complexation of CH_2Cl_2 by (4) followed the same trend, the complexed guest resonance being observed at δ 1.15, instead of 5.50 for the free species. Competition experiments showed that CHCl₃ was preferred over CH₂Cl₂ by ca. 0.25 kcal/mol (1 cal = 4.184 J) (stability constants ratio 1.54 ± 0.1 at 300 K). The actual stability constants were roughly estimated (±60%) to be $K_s \sim 7.7 \times 10^3$ and $\sim 5 \times 10^3$ dm³/mol for CHCl₃ and CH₂Cl₂, respectively. For comparison, the complexation of the same guests by lipophilic host (1) was studied in (CDCl₂)₂, and it showed reversed selectivity, dichloromethane [K_s 475 dm³/mol ($\pm 20\%$)] being preferred over chloroform (K_s 230 dm³/mol) by 0.43 kcal/mol.

As previously discussed in the case of cryptophane-E,² the ΔG_i values (Table 1) for (1) complexing CH_2Cl_2 and $CHCl_3$ principally originate from overall attractive host-guest interactions§ and hence should represent the 'lipophilic forces' responsible for the stability of the complexes. On going from (1) in $(CDCl_2)_2$ to (4) in D₂O, the barrier (ΔG_i^{\ddagger}) for entrance of the guests shows little variation, and we presume that the difference in the ΔG_i values in both solvents at least in part corresponds to the 'hydrophobic forces' that enhance the stability of the complexes in water. As would be expected, the hydrophobic contribution is larger for chloroform, which is ca. 30% bulkier in volume than dichloromethane, and therefore might account for the inversion of the selectivity of (1) and (4)vs. these guests on going from a lipophilic to a hydrophilic

[†] Positive ion fast atom bombardment mass spectra (f.a.b.m.s.) were taken on a ZAB HF spectrometer, n.m.r. spectra were recorded on a Brucker AM200SY instrument operating at 200.13 MHz; cryptophanol-A (2) (δ from internal SiMe₄ in CD₃COCD₃): 3.16 (d, H_e) and 4.40 (d, H_a, J 13.5 Hz), 4.40 (s, OCH₂CH₂O), 6.63 and 6.73 (s,s, ArH), 7.70 (s, OH); hexaester (3) (δ from internal SiMe₄ in CD₃COCD₃): 3.34 (d, H_e) and 4.55 (d, H_a, J 13.7 Hz), 3.82 (s, OCH₃), 4.41 (m, OCH₂CH₂O), 4.78 (q, OCH₂CO₂), 6.82 and 6.89 (s,s, ArH); hexa-acid (4) (δ from internal SiMe₄ in CD₃SOCD₃ + CF₃CO₂D): 3.25 (d, H_e) and 4.48 (d, H_a, J 13.3 Hz), 4.20 (s, OCH₂CH₂O), 4.56 (s, OCH₂CO₂), 6.77 and 6.81 (s,s for ArH). Satisfactory elemental analyses were obtained for (2) and (3).

[‡] A small amount of acetone was identified by n.m.r. spectroscopy after it had been displaced by addition of CHCl₃; thus acetone must be weakly bound, compared to the halogenomethanes.

[§] This view is supported by the large exothermal ΔH values measured for host (1) complexing CH₂Cl₂ (-3.3 kcal/mol) and CHCl₃ (-8.2 kcal/mol) in $(CDCl_2)_2$ (values obtained from the variation of K_s with T).

medium. However, a number of important parameters, with regard to the solvent-host and solvent-guest interactions, as well as the complexation enthalpy and entropy values, have yet to be measured, and such data will provide valuable information as to the relative contributions of 'lipophilic' and 'hydrophobic' effects in the formation of the cryptophanehalogenomethane complexes, and in general, in the formation of neutral host-neutral guest supermolecules.

We thank Dr. Ober, Laboratoire de Physique de la matière condensée, Collège de France, for the X-ray scattering measurements.

Received, 12th September 1986; Com. 1308

References

- 1 J. Canceill, L. Lacombe, and A. Collet, J. Am. Chem. Soc., 1985, 107, 6993.
- 2 J. Canceill, L. Lacombe, and A. Collet, J. Am. Chem. Soc., 1986, 108, 4230.
- 3 For related work see F. Diederich, K. Dick, and D. Griebel, J. Am. Chem. Soc., 1986, 108, 2273, and references therein.
- 4 J. Gabard and A. Collet, J. Chem. Soc., Chem. Commun., 1981, 1137.
- 5 E. Vedejs and P. L. Fuchs, J. Am. Chem. Soc., 1973, 95, 822; J. Canceill, A. Collet, J. Gabard, G. Gottarelli, and G. P. Spada, J. Am. Chem. Soc., 1985, 107, 1299.
- 6 Determination of pD values: P. K. Glasoe and F. A. Long, J. Phys. Chem., 1960, 64, 188; pD = pH meter reading + 0.40.